Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0359720070250040535
Journal of the Korean Neurological Association
2007 Volume.25 No. 4 p.535 ~ p.543
Treatment with MnTBAP Protects Against Early Nuclear Translocation of Endonuclease G and Reduces Cerebral Infarction after Focal Cerebral Ischemia/Reperfusion in Mice
Kim Hyun-Woo

Cho Kyoung-Joo
Kim Hyun-Jeong
Cho Yang-Je
Lee Byung-In
Kim Gyung-Whan
Abstract
Background: Reactive Oxygen Species (ROS) have been implicated in the pathophysiology of brain injury after ischemia/reperfusion. Recently, it has been reported that endonuclease G (EndoG), a mitochondrial protein, is activated by neuronal excitotoxicity and translocated into nucleus inducing apoptosis. However, it is not elucidated whether ROS are involved in the nuclear translocation of EndoG in focal cerebral ischemia/reperfusion in mice. We investigated whether treatment of manganese tetrakis (4-benzoic acid) porphyrin (MnTBAP) protects against early nuclear translocation of EndoG and reduces cerebral infarction after ischemia/reperfusion in mice

Methods: Adult male mice were subjected to middle cerebral artery occlusion (MCAO) for 60 min, followed by reperfusion. Immunohistochemistry and Western blot analysis for EndoG were performed at various time points after ischemia/reperfusion. Double staining with EndoG and Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeling (TUNEL) was also performed. MnTBAP was used to determine whether the production of ROS could inhibit translocation of EndoG into the nucleus.

Results: Western blot analysis and Immunohistochemistry of EndoG showed that nuclear EndoG was detected as early as 4 hrs after reperfusion, and mitochondrial EndoG was significantly reduced at the same time. Double staining with EndoG and TUNEL showed a spatial relationship between EndoG expression and DNA fragmentation. MnTBAP-treated mice showed that the translocation of EndoG was attenuated in comparison with the vehicle- treated mice and decreased infarction volume after ischemia/reperfusion.

Conclusion: MnTBAP reduced the generation of ROS, and inhibited the early translocation of EndoG, which was followed by the reduction of infarction volume in the ischemic brain after ischemia/reperfusion.
KEYWORD
Endonuclease G, DNA fragmentation, Transient focal cerebral ischemia, MnTBAP
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø